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This paper is a generalization of a previous analysis of the effects of a small-amplitude,
steady, streamwise vorticity field on the flow over an infinitely thin flat plate in an
otherwise uniform stream. That analysis, which is given in Goldstein & Leib (1993),
required that the disturbance Reynolds number (i.e. the Reynolds number based
on the disturbance velocity and length scale) be infinite while the present paper
considers the more general case where this quantity can be finite. The results show
how an initially linear perturbation of the upstream flow ultimately leads to a small-
amplitude but nonlinear cross-flow far downstream from the leading edge. This
flow can, under certain conditions, cause the streamwise velocity profiles to develop
distinct shear layers in certain localized spanwise regions. These shear layers, which are
remarkably similar to the ones that develop in Tollmien–Schlichting-wave transition
(Kovasznay, Komoda & Vasudeva 1962), are highly inflectional and can therefore
support the rapidly growing inviscid instabilities that are believed to break down
into turbulent spots (Greenspan & Benney 1963, and, subsequently, many others).
Numerical computations are carried out for input parameters which approximate the
flow conditions of some recent experimental studies of the so-called Klebanoff-mode
phenomenon. The results are used to explain some of the experimental observations,
and, more importantly, to explain why the averaged quantities usually reported
in these experiments do not correlate well with the turbulent-spot formation and
therefore with the overall transition process.

1. Introduction
This paper describes a predominantly numerical study of the effects of vortical

free-stream disturbances on transition to turbulence in flat-plate boundary layers.
Weak free-stream turbulence in an otherwise uniform stream is probably the most
important example of this type of disturbance, and Dryden (1936) and Taylor (1939)
were the first to study its effects on the flat-plate boundary layer. They showed
that the resulting streamwise velocity fluctuations were of very low frequency and
reached amplitudes that were several times larger than those in the free stream. Taylor
(1939) noted that the velocity fluctuations appear to correspond to a thickening and
thinning of the boundary layer, which he accurately modelled using simple heuristic
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arguments. These low-frequency structures, which are now referred to as Klebanoff
modes (Kendall 1991), are not only important in their own right but also because
of their possible relation to the wall-layer streaks in a fully turbulent boundary
layer.

There have been several theoretical and numerical studies of the effect of small
free-stream disturbances on flat-plate boundary layers, but only a few of these
actually relate to the Klebanoff modes. Crow (1966) put the original Taylor result
on a rational asymptotic basis, by carrying out a linear analysis of the boundary-
layer flow due to a steady spanwise distortion of an otherwise uniform free stream.
The linearization is valid when either the disturbance Reynolds number r ≡ εRλ
or the appropriately scaled distance from the leading edge (or both) is (are) small.
Here Rλ is just the ordinary Reynolds number based on the characteristic length
scale λ of the disturbance, and ε is its characteristic amplitude. Crow (1966) found
that the free-stream distortion produces a streamwise velocity fluctuation that grows
linearly with downstream distance and has a shape that agrees exactly with the one
proposed by Taylor (1939). Luchini (1996) considered the eigenmode solutions to
the linearized boundary-layer equations and found an algebraically growing three-
dimensional mode. However, the growth rate of that mode is significantly smaller than
the growth that occurs in Crow’s forced solution (see discussion of Leib, Wundrow &
Goldstein 1999, below).

Crow’s analysis breaks down when the downstream distance becomes O(λ`), where
` = min{Rλ, ε−1}, at which point spanwise-diffusion or nonlinear effects (or both)
become important. The near-surface flow is then determined by a slightly simplified
version of the full Navier–Stokes equations, namely the Navier–Stokes equations with
the streamwise derivatives neglected in the viscous and pressure-gradient terms. Kemp
(1951), who first introduced these equations, referred to them as the boundary-region
equations, and we shall adopt this terminology here. Goldstein† & Wundrow (1998)
and Goldstein (1997) used these equations to investigate the response of laminar
boundary layers to free-stream disturbances and thereby extended the original Crow
(1966) analysis to include cross-stream ellipticity and nonlinear effects. An important
purpose of the present paper is to provide detailed numerical confirmation of several
conjectures that appear in this earlier work.

The boundary-region equations can be linearized about the Blasius solution when
r � 1 and the linearized equations have recently been applied to the free-stream dis-
turbance problem by a number of investigators. Andersson, Berggren & Henningson
(1999) and Luchini (2000, in a follow-on to his 1996 paper which dealt only with so-
lutions to the linearized boundary-layer equations) computed optimal spatial growth
rates for steady perturbations which were introduced near the leading edge but vanish
in the free stream. Bertolotti (1997) used the linearized boundary-region equations
to compute the evolution of a quasi-self-similar disturbance introduced downstream
of the leading edge and subjected to continuous forcing by a free-stream vorticity
mode. Despite the differences in initial and boundary conditions, these computations
produced normalized fluctuating streamwise velocity profiles that are in remarkably
good agreement with the experimental findings. This somewhat surprising result is a
consequence of the fact that almost any cross-flow perturbation introduced into the
boundary layer will develop into a streamwise streak through the so-called lift-up
effect (Landahl 1977). The streak then leads to a thickening and thinning of the

† The material was originally presented at the international conference in honour of Sir James
Lighthill held at Florida State University in November 1996.
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boundary layer with a very universal streamwise velocity profile that is reasonably
well described by the formula originally derived by Taylor (1939).

A much more difficult challenge is the prediction of the streamwise growth of the
Klebanoff modes. The aforementioned analyses did not properly match the boundary-
region solutions onto the incident free-stream disturbances and could therefore only
compare the computed and measured streamwise-velocity growth in an ad hoc fash-
ion. The appropriate matching was worked out by Leib et al. (1999) who represented
the free-stream turbulence by a superposition of vortical Fourier modes and deter-
mined the response in the boundary layer by computing the corresponding Fourier-
component solutions to the linearized boundary-region equations. The results were
then superposed to compute the root mean square of the fluctuating streamwise
velocity in the boundary layer produced by the actual free-stream turbulence.

The Leib et al. (1999) calculations show that continuous forcing is essential for
producing the large Klebanoff-mode growth rates actually observed in the experiments
even in the downstream region where the Crow (1966) analysis breaks down. They
also show that Klebanoff-mode growth exhibits a strong sensitivity to low-frequency
anisotropy in the free-stream turbulence spectrum – a result which could not have
been obtained if the boundary-region solutions had not been required to match onto
the incident free-stream disturbance. Finally, it is worth noting that Leib et al. (1999)
as well as Choudhari (1996) did not have to include the eigenmode solutions of
Luchini (1996) in order to match their perturbed boundary-layer flows onto vortical
disturbances in the free stream, which suggests that these eigensolutions would not be
generated by an incident free-stream turbulence field. The present work shows that
this is also true in the nonlinear case.

The statistical analysis of Leib et al. (1999) provides results that can be compared
with experiment but, for reasons given below, the transition process can only be
explained by including nonlinearity from the outset and considering the instantaneous
velocity profiles. Then since the experiments show that the Klebanoff modes are of very
low frequency and the Leib et al. (1999) analysis (also see Gulyaev et al. 1989) shows
that they are driven only by the cross-flow components of the free-stream velocity, an
appropriate canonical problem that captures the correct physics might be the flow over
a flat plate due to a steady streamwise vorticity distribution imposed on an otherwise
uniform stream. The Crow (1966) analysis is of this type but, as indicated above, it
eventually breaks down at downstream distances of O(λ`) which is equal to O(λε−1)
when the disturbance Reynolds number is large, i.e. r � 1. Nonlinear effects then
become important while spanwise-diffusion and cross-flow-ellipticity effects remain
negligible. The large-r limit was considered by Goldstein & Leib (1993, hereafter
referred to as GL). This was based on earlier work by Goldstein, Leib & Cowley
(1992) who carried out a similar analysis for the case where the upstream vorticity
was normal to plate surface.

The GL analysis shows that the cross-flow effects produce order-one changes in the
streamwise boundary-layer velocity profiles at O(λε−1) distances from the leading edge
which means that the boundary-layer flow is then fully three dimensional. The linear
rapid-distortion-theory solution, which was shown to describe the interaction of the
upstream disturbance with the leading edge, also breaks down at these downstream
distances. The inviscid flow outside the boundary layer is then governed by the
two-dimensional, time-dependent vorticity equation with the streamwise coordinate
playing the role of the time. The entire flow field is therefore nonlinear in this stage,
but remains parabolic in the streamwise direction.

The GL analysis also shows that the resulting external cross-stream pressure
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gradients eventually cause the three-dimensional boundary layer to break down due
to a so-called collisional-type separation (Cebeci, Khattab & Stewartson 1981). The
breakdown is preceded by a highly localized (in the spanwise direction) thickening
of the boundary layer as increasing amounts of low-momentum near-wall fluid are
advected toward the boundary-layer edge. This nonlinear behaviour might explain
the so-called ‘backward jets’ which were identified as precursors to turbulent-spot
formation in some recent direct numerical simulations of the effect of free-stream
turbulence on boundary-layer transition (Wu et al. 1999; Jacobs & Durbin 2001). GL
found that the streamwise velocity profiles become inflectional prior to breakdown
and suggested that these profiles could become unstable to Rayleigh-type instabilities
thereby providing a mechanism for turbulent-spot formation closer to the wall.

Most of the more recent experimental studies of the effect of free-stream turbu-
lence on pre-transitional boundary layers (e.g. Roach & Brierley 1992; Blair 1992;
Westin et al. 1994; Kendall 1998) were carried out at moderate values of the distur-
bance Reynolds number – typically less than 100 or so. The present paper therefore
reconsiders the flow analysed in GL in the more general context where the distur-
bance Reynolds number is order one, i.e. r = O(1). The Crow (1966) analysis still
breaks down at downstream distances of O(λε−1) in this limit but now with spanwise-
diffusion, cross-flow-ellipticity and nonlinear effects all coming into play. The flow
in the vicinity of the leading edge can still be linearized and remains unchanged at
lowest approximation, but the downstream nonlinear inviscid region and correspond-
ing three-dimensional boundary layer merge into a single region in which the flow is
governed by the full nonlinear boundary-region equations.

The relation of Klebanoff modes to boundary-layer transition has been somewhat
contentious over the years. The experimental evidence as well as the results of the
recent numerical simulations of Jacobs & Durbin (2001) suggest that the connection
can be found by considering the nonlinear stage of the instantaneous velocity pro-
files as originally pointed out by Goldstein & Wundrow (1998). They showed that
nonlinear focusing effects can produce large localized distortions of the flow even
when the spanwise-average velocity distortion (which is the one usually reported by
the experimenters) is relatively small. The localized distortions tend to develop dis-
tinct shear layers which are remarkably similar to the ones observed by Kovasznay,
Komoda & Vasudeva (1962) for Tollmien–Schlichting-wave type transitions. These
shear layers tend to be highly inflectional and can therefore support rapidly growing
instabilities that are believed to break down into turbulent spots (see Greenspan &
Benney 1963). This suggests that the ultimate breakdown into turbulence depends on
localized features of the flow and not on the average conditions usually reported in
the Klebanoff-mode experiments.

The primary purpose of the present paper is to use accurate numerical computations
to further investigate this possibility. Then, as indicated above, it is not unreasonable
to begin with a steady cross-stream distortion in the upstream flow. The computed
results show that two regions of enhanced instability can emerge as the boundary-layer
velocity profiles become sufficiently nonlinear. The first region appears relatively close
to the wall while the second lies in the outer reaches of the boundary layer. Both are
highly localized in the spanwise direction and involve highly inflectional streamwise
velocity profiles which can support Rayleigh-type instabilities. These instabilities grow
on a streamwise length scale that is significantly smaller than the boundary-layer
thickness and can therefore easily dominate the much slower growing Tollmien–
Schlichting waves – which grow on the much longer viscous scale and which are
the only instability waves that would exist in the absence of the imposed streamwise
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vorticity. These highly localized Rayleigh instabilities can then lead to a local transition
of the boundary layer, as pointed out by Goldstein & Wundrow (1998) and as observed
in the Jacobs & Durbin (2001) simulations. The resulting turbulent flow is likely to
resemble a turbulent spot (Kovasznay et al. 1962).

Our calculations show that the strength and location of these distortions are quite
sensitive to the details of the imposed upstream disturbance and that the occurrence of
moderately strong distortions, which are the ones expected to undergo this breakdown
process, is relatively rare. This might explain the intermittent behaviour of the
experimentally observed turbulent spots. The analysis also shows that the average
velocity profiles that are usually reported in the Klebanoff-mode experiments are
likely to mask the strong localized distortions that produce the spots. It is therefore
unlikely that these types of results, or for that matter, the corresponding root-mean-
square velocity fluctuations calculated in Leib et al. (1999) are all that relevant to the
actual transition process.

While the large-r asymptotics of GL cannot be used to qualitatively predict the
results of the Klebanoff-mode experiments, they can provide a relatively simple
analytical structure for understanding the basic phenomena. This structure is most
easily constructed by introducing appropriate shear layers (vortex sheets) to eliminate
the singularities that appear in the GL analysis. Another purpose of this paper is
therefore to show how these singularities, which are associated with the collisional
separation of the cross-stream flow that was described above, can be eliminated. We
were able to compute solutions to the present problem for fairly large values of r.
The numerical results suggest that this separated cross-flow will leave the surface
to form a vortex sheet and that the viscous effects should be confined to a surface
boundary layer and a viscous layer surrounding the sheet as r →∞. The slender-body
analysis used by Smith (1977) and others to predict the separated flow over slender
cones at a small angle of attack then suggests that the resulting infinite-disturbance
Reynolds-number flow will remain parabolic in the streamwise direction and that the
inviscid region will be governed by a kind of slender-body approximation, but with
distributed vorticity throughout the flow. The streamwise velocities computed below
show no evidence of separation in the usual sense but the cross-flow profiles exhibit
a strong tendency to break away from the surface. This phenomenon is sometimes
referred to as cross-flow separation in the literature. It should be emphasized that true
vortex sheets only form in the infinite-disturbance Reynolds-number limit, but our
computations show that the finite-disturbance Reynolds-number solutions approach
this behaviour as r becomes large.

The turbulent-spot-formation mechanisms described above are most likely to occur
for free-stream turbulence levels in the range 0.1–5%. For turbulence levels below
0.1%, transition results from the orderly amplification of nearly discrete-frequency,
two-dimensional, Tollmien–Schlichting waves. These primary instabilities eventually
become large enough to support oblique secondary instabilities that can then interact
nonlinearly to generate strong spanwise-variable mean-flow distortions (see, for ex-
ample, Benney 1984; Goldstein & Choi 1989; Hall & Smith 1991; Hall & Horseman
1991; Wu 1993; Mankbadi, Wu & Lee 1993) which are structurally similar to the
Klebanoff modes discussed above. We have already indicated that the subsequent
destabilization and breakdown of this flow (which was observed in the Kovasznay et
al. 1962 experiments) should then follow the path outlined above for the Klebanoff
modes. This is an example of how different initial states can ultimately lead to the
same final state – which is consistent with the frequently evoked characterization of
a fully developed turbulent flow as a phase-space attractor. In fact, the formation
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of streaks and their subsequent breakdown due to secondary instabilities may be a
universal aspect of all transition processes in the boundary layer and, in that respect,
the Klebanoff modes may be thought of as a true ‘bypass mechanism’ that bypasses
the Tollmien–Schlichting-wave stage.

The wall-layer streaks in a turbulent boundary layer, which (like the Klebanoff
modes) are spanwise-variable regions of high and low streamwise velocity associated
with counter-rotating streamwise vortices, may be driven by the turbulence in the
outer part of the boundary layer in the same way that Klebanoff modes are driven
by free-stream turbulence (Kline et al. 1967). However, the effective disturbance
Reynolds number might be significantly larger in this case, so that significant cross-
flow separation might occur – corresponding to the experimentally observed ejections
in the fully turbulent boundary layer. The present work would then suggest that these
ejections are the result of a collisional-type boundary-layer separation similar to the
one that occurs on slender cones at an angle of attack to the incoming flow.

Cantwell, Coles & Dimotakis (1978) observed elongated streamwise disturbances
in the wall region below growing turbulent spots. They conjectured that these were
Taylor–Görtler vortices generated by the passage of the spot. A more likely scenario
is that they are driven by the turbulence within the spot in the same way as the
Klebanoff modes are driven by the free-stream turbulence.

The phenomena being considered in this paper are therefore quite generic. In fact,
it is worth noting that one of the suggestions arising from the Workshop on Coherent
Structure of Turbulent Boundary Layers (Smith & Abbott 1979) was that the dynamics
of counter-rotating vortices should be the subject of a detailed study. We believe that
the present work significantly contributes to that objective.

The problem is formulated in §2 where the upstream linearized solution is discussed.
The boundary-region and vortical-free-stream problems that match onto this solution
are discussed in §3. These problems are, in general, coupled when formulated in terms
of primitive variables, but, as shown in §3, the free-stream problem can be completely
decoupled from the boundary-region problem that applies near the surface of the plate
by introducing appropriately transformed variables into the governing equations. This
allows the corresponding solutions to be found seriatum and greatly simplifies the
numerical computation. The numerical method used to solve the boundary-region
problem is described in §4. The numerical results are presented in §5, and their
implications for turbulent-spot formation and other issues related to sublayer streaks
are discussed.

2. Formulation and breakdown of the linear solution
As in GL, attention is focused on an incompressible flow over a semi-infinite flat

plate due to a small, O(ε), streamwise vorticity field, with characteristic length scale λ,
imposed on an otherwise uniform upstream flow. All lengths are non-dimensionalized
by λ, the velocity u = {u, v, w} is non-dimensionalized by the uniform upstream velocity
U∞, and the pressure is non-dimensionalized by ρU2∞, where ρ is the (constant) density.
The Cartesian coordinate system {x, y, z} is placed at the leading edge of the plate
with x in the direction of the undisturbed free stream, y normal to the plate, and z
along the span.

It follows that

u→ i + ε
(
jψ∞z − kψ∞y

)
as x→ −∞, (2.1)

where ψ∞(y, z) is a cross-flow stream function used to characterize the upstream
disturbance, {i, j , k} are unit vectors in the {x, y, z} directions, respectively, and an



Effect on a laminar boundary layer of streamwise vorticity 235

U∞

λR
λ

λR
λ

λ

λ

λz

λx

λy

II

I

III
Flat plate

IV

δλ

λ

Figure 1. Flow configuration.

independent variable used as a subscript denotes differentiation with respect to that
quantity.

The effects of plate thickness are largely irrelevant for the imposed streamwise
vorticity fields being considered herein; so, for simplicity, the plate is taken to be
infinitely thin. As in GL, the Reynolds number Rλ ≡ λU∞/ν, where ν is the kinematic
viscosity, is assumed to be large enough so that viscous effects are initially confined
to a thin layer near the plate surface. However, as indicated in §1, it is now assumed
that

r ≡ εRλ = ελU∞/ν = 1/σ = O(1), (2.2)

where σ is introduced in order to simplify the equations.
Then in the limit as ε → 0 and Rλ → ∞ with r (or σ) held fixed at O(1), the flow

divides itself into the four distinct asymptotic regions shown in figure 1. The GL
analysis corresponds, at least in part, to the r → ∞ limit of the present result (see
Appendix B). The low-turbulence Reynolds-number analysis of Leib et al. (1999) is
a generalization (to include unsteady effects) of the r → 0 limit of the present result,
and the general case is discussed in Goldstein (1997) and Goldstein & Wundrow
(1998).

The flow in region I, which is a basically inviscid region of dimensions O(λ), is
governed by linear rapid-distortion theory. Beneath this region is a predominantly
viscous layer, denoted region II in figure 1, in which the flow is nearly two-dimensional,
with three-dimensional effects entering only as an O(ε) perturbation to the Blasius
solution. But as indicated by Crow (1966), the boundary-layer displacement effects
induce an O(ε1/2) correction to the rapid-distortion solution when σ is O(1). This is
most easily accounted for by expanding the inviscid solution in region I (where x and
y are both O(1)) as

u = ∇Φ+ εu0 + ε2u1 + · · · , (2.3)

p = − 1
2
|∇Φ|2 + εp0 + ε2p1 + · · · , (2.4)

and including the displacement effects in the base-flow potential Φ(x, y). Then (cf.
Van Dyke 1975),

Φ = x−Re iβ(2σεξ)1/2 + · · · , (2.5)

to the required order of accuracy, and {un, pn} include terms of O(ε1/2) where Re
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denotes the real part, i ≡ (−1)1/2, ξ ≡ x+ iy, and β is a constant determined by the
Blasius solution (see (2.15) below).

The O(ε) terms in (2.3) and (2.4) are governed by the linearized Euler equations;
so the results of Goldstein (1978) can be used to write

u0 = {u0, v0, w0} = ∇φ+ u(I), (2.6)

p0 = −∇Φ · ∇φ, (2.7)

where (Kerschen & Balsa 1981)

u(I) =

(
∇Ψ ∂

∂z
− k ∂

∂Ψ

)
ψ∞(Ψ, z), (2.8)

the base-flow stream function Ψ (x, y) is given by

Ψ = y −Re β(2σεξ)1/2, (2.9)

and the perturbation potential φ(x, y, z) satisfies

∇2φ = −∇ · u(I) (2.10)

subject to

φ→ 0 as x→ −∞, ∇φ→ 0 as y → ±∞, φ = 0 at y = 0, x < 0, (2.11)

and an appropriate matching condition on Ψ = 0, x > 0. To lowest order of
approximation, the matching condition simply requires that the normal velocity v0

vanish at the surface of the plate. This does not, however, determine φ correct to
O(ε1/2), which is necessary in order to derive upstream conditions that are accurate
enough to start the numerical solution in region III.

The complete solution to (2.10) and (2.11) can be found using the Wiener–Hopf
technique (Noble 1958) once the appropriate boundary condition on Ψ = 0 has been
specified. The relevant result has a ‘square root’ singularity at the leading edge of
the plate, which, however, has no affect on the solution in region III, which is of
primary interest here, because the singular part of φ decays exponentially fast as
x→ ∞ (Choudhari 1996). GL show that the lowest-order flow in region I eventually
becomes two-dimensional in the cross-flow plane at large downstream distances, and
Crow’s (1966) results can then be used to express the velocity field in region II as

u = F ′ + εw0z(x, 0, z)
1
2
xηF ′′ + · · · , (2.12)

v = εσ∆−1(ηF ′ − F) + εw0z(x, 0, z)
1
4
∆G+ · · · , (2.13)

w = εw0(x, 0, z)F
′ + · · · , (2.14)

when x is in the overlap region 1 � x � ε−1. Here ∆ ≡ (2σεx)1/2, η ≡ y/∆ = O(1),
the Blasius function F(η) satisfies

F ′′′ + FF ′′ = 0, F(0) = F ′(0) = 0, F → η − β as η →∞, (2.15)

G(η) ≡ η2F ′′ − 3ηF ′ −F , a prime denotes differentiation with respect to the argument
and w0(x, 0, z) denotes the spanwise velocity component of the zeroth-order rapid-
distortion solution evaluated at the surface of the plate. In view of (2.6) and (2.8)–
(2.11), w0 must expand like

w0(x, 0, z) = w00(0, z) + ∆w01(0, z) + · · · ,
for 1� x� ε−1, (see (2.21) below).
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The Ψ = 0 boundary condition for φ can now be determined to the required order
of accuracy in the overlap region by matching the large-η expansions of (2.12)–(2.14)
with the small-Ψ expansion of (2.3), which yields

φy + v(I) = 1
4
β∆(φzz + w(I)

z ) at y = 0, (2.16)

where use has been made of (2.6), (2.10) and the requirement that 1� x� ε−1.
Since the analysis is restricted to smooth spanwise-periodic imposed vorticity fields,

ψ∞ can be expressed in terms of a Fourier series of the form

ψ∞ =

+∞∑
m=−∞

ψ(m)
∞ (y) eiγmz, (2.17)

where ψ(0)∞ (y) = 0, m2ψ(m)∞ (y) → 0 as |m| → ∞, and similarly for φ. The scale factor
γ is determined such that the non-dimensional characteristic length of the imposed
disturbance is unity (see (5.6) below). Substituting (2.17) and the corresponding
expression for φ into (2.8), (2.10), (2.11) and (2.16) and equating like powers of eiz

yields a system of boundary-value problems in y which can be solved to show that

φ(m) = i
m

|m|
{
ψ(m)
∞ (0)− 3

4
β∆
[
ψ(m)
∞
′
(0) + γ|m|ψ(m)

∞ (0)
]}

e−γ|m|y
∗
, (2.18)

to the required order of accuracy for 1� x� ε−1, where the shifted coordinate

y∗ = y − β∆ (2.19)

accounts for the displacement thickness of the Blasius flow.
It therefore follows from (2.5)–(2.9), (2.17) and (2.18) that the O(ε) terms in (2.3)

and (2.4) can be written as

v0 = ψ0z(y
∗, z)− β∆π0yz(y, z) + · · · , (2.20)

w0 = −ψ0y∗(y
∗, z) + β∆π0yy(y, z) + · · · , (2.21)

p0 = εσβ∆−1π0z(y, z) + · · · , (2.22)

when x is in the overlap region, where

ψ0(y, z) ≡
+∞∑

m=−∞

[
ψ(m)
∞ (y)− ψ(m)

∞ (0)e−γ|m|y
]

eiγmz, (2.23)

π0(y, z) ≡ 3
4

+∞∑
m=−∞

1

γ|m|
[
ψ(m)′
∞ (0) + γ|m|ψ(m)

∞ (0)
]

e−γ|m|y+iγmz. (2.24)

It is now clear that the boundary-layer displacement effects cause the solution (2.18)
to break down when x is O(ε−1), which reflects the fact that the viscous-diffusion
effects become important on an O(1) y-scale. Moreover, GL show that nonlinear
effects also become important when x is O(ε−1) and cause a further disordering of the
expansions (2.3) and (2.4). A new solution must therefore be constructed in region
III where y and

x̄ ≡ εx (2.25)

are both O(1).
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3. The nonlinear boundary-region problem
Introducing the scaled streamwise variable (2.25) into (2.12)–(2.14) shows that the

velocity field in this nonlinear viscous region should expand like

u = U(x̄, y, z) + · · · , v = εV (x̄, y, z) + · · · , w = εW (x̄, y, z) + · · · , (3.1)

while (2.4), (2.5) and (2.22) imply that the corresponding pressure field expands like

p = − 1
2

+ ε2P (x̄, y, z) + · · · . (3.2)

Substituting these results, together with (2.2) and (2.25), into the full Navier–Stokes
equations and equating like powers of ε yields the boundary-region equations of
Kemp (1951)

Ux̄ + Vy +Wz = 0, (3.3)

UUx̄ + VUy +WUz = σ(Uyy +Uzz), (3.4)

UVx̄ + VVy +WVz + Py = σ(Vyy + Vzz), (3.5)

UWx̄ + VWy +WWz + Pz = σ(Wyy +Wzz). (3.6)

Like the three-dimensional, boundary-layer equations, which describe the flow in the
corresponding region in GL, these equations are parabolic in the streamwise direction,
but they are now elliptic, rather than hyperbolic, in the cross-flow plane.

The solutions to (3.3)–(3.6) must satisfy the no-slip condition

U = V = W = 0 at y = 0, (3.7)

and must match onto the linear solutions of §2 as x̄→ 0. The latter condition is rather
more intricate than that for the boundary-layer problem analysed in GL because the
increased thickness of region III means that (3.1) and (3.2) must be matched onto the
downstream limits of the solutions in both regions I and II. The details are given in
Appendix A where a single set of upstream conditions is arrived at by constructing
composite expansions for the velocity and pressure fields that are uniformly valid in
y as x̄→ 0.

The assumed spanwise periodicity of the imposed disturbance (2.17) implies that the
boundary-region solutions must also be spanwise periodic. The boundary conditions
at large transverse distances are obtained by matching to the solution in region IV.
The streamwise velocity component must, of course, satisfy

U → 1 as y →∞, (3.8)

in order to match with the uniform stream. The V and W velocity components must,
on the other hand, match onto an O(ε) cross-flow that is affected (at leading order) by
the spanwise-averaged displacement thickness of the boundary-region solution, i.e.

δ̄(x̄) ≡ γ

2π

∫ 2π/γ

0

∫ ∞
0

(1−U)dydz. (3.9)

This displacement induces a two-dimensional inviscid flow in region IV where the
appropriately scaled transverse variable is

ȳ ≡ εy = O(1). (3.10)

The form of the solution is then determined by substituting (2.25) and (3.10) into (2.3)–
(2.5) and recognizing that the transverse scale of the zeroth-order rapid-distortion
solution is set by the imposed disturbance (2.17) which means that the O(ε) flow in
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region IV must have a cross-flow component that depends explicitly on y as well as
on the ‘slow’ variable ȳ over which modulations due to the plate-induced flow effects
occur. In view of this, the governing equations can be simplified by separating out
the two-dimensional inviscid motion and the solution is therefore expressed as

u = 1 + ε [ū0(x̄, ȳ) + û0(x̄, ȳ, y, z)] + · · · , (3.11)

v = ε [v̄0(x̄, ȳ) + v̂0(x̄, ȳ, y, z)] + · · · , (3.12)

w = εŵ0(x̄, ȳ, y, z) + · · · , (3.13)

p = − 1
2

+ εp̄0(x̄, ȳ) + ε2p̂1(x̄, ȳ, y, z) + · · · , (3.14)

where {ū0, v̄0, p̄0} satisfies the two-dimensional Euler equations and {û0, v̂0, ŵ0, p̂1} must
match onto the zeroth-order rapid-distortion solution as x̄→ 0.

As ȳ → 0, the solution for v̄0 must match onto the spanwise-averaged normal
velocity at the edge of region III, which (unlike the remaining portion of V ) is
determined internally by the boundary-region flow itself. Integrating (3.3) from z = 0
to 2π/γ and then from y = 0 to ∞ and making use of (3.9) leads to the requirement

v̄0 = − γ

2π

∫ 2π/γ

0

∫ ∞
0

Ux̄dydz = δ̄
′
(x̄) at ȳ = 0. (3.15)

Then since {ū0, v̄0, p̄0} vanishes as x̄ → 0, the resulting two-dimensional flow is
irrotational, and it follows from complex-variable theory and the linearized Euler
equations that

ū0 = −p̄0 = −Re iδ̄
′
(ξ̄), v̄0 = Re δ̄

′
(ξ̄), (3.16)

provided δ̄ can be analytically continued to complex values of ξ̄ ≡ εξ = x̄+ iȳ.
Substituting (3.16) into (3.11)–(3.14) and the result together with (2.2) and (2.25) into

the full Navier–Stokes equations and introducing the modified Prandtl transformation

ŷ ≡ y −Re δ̄(ξ̄) = O(ε−1), (3.17)

to remove the explicit dependence on the plate-induced flow effects (and consequently
on the slow variable ȳ) shows that the cross-flow in region IV is governed by

v̂0ŷ + ŵ0z = 0, (3.18)

v̂0x̄ + v̂0v̂0ŷ + ŵ0v̂0z + p̂1ŷ = σ
(
v̂0ŷŷ + v̂0zz

)
, (3.19)

ŵ0x̄ + v̂0ŵ0ŷ + ŵ0ŵ0z + p̂1z = σ
(
ŵ0ŷŷ + ŵ0zz

)
, (3.20)

which, in order to match with (2.23), must be solved subject to

v̂0 = ψ∞z(ŷ, z), ŵ0 = −ψ∞ŷ(ŷ, z) at x̄ = 0. (3.21)

Equations (3.16)–(3.20) then show that streamwise ellipticity, which is the new feature
in region IV, only affects the two-dimensional flow {ū0, v̄0, p̄0} and that the governing
equations for {v̂0, ŵ0, p̂1} remain parabolic in x̄ when written in terms of ŷ. Equations
(3.18) and (3.21) along with the assumed form of the imposed disturbance (2.17)
show that the spanwise average of v̂0 is identically zero for all x̄. The same is not, in
general, true of the spanwise averages of ŵ0 and p̂1.

Equating the outer limits of (3.1) and (3.2) with the inner limits of (3.11)–(3.14)
and making use of (3.16) yields the matching conditions

U → 1, (3.22)
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V → δ̄
′
(x̄) + v̂0(x̄, y − δ̄, z), (3.23)

W → ŵ0(x̄, y − δ̄, z), (3.24)

P → p̂1(x̄, y − δ̄, z), (3.25)

as y → ∞. Equations (3.23)–(3.25) clearly show that the disturbance-induced cross-
flow in region IV gives rise to a continuous forcing of the boundary-region problem.

The spanwise periodicity of the imposed disturbance (2.17) implies that the solution
in region IV must also be spanwise periodic. Furthermore, since (3.22)–(3.25) place no
restrictions on the solution to (3.18)–(3.20), it follows from (3.17) and (3.21) that the
transverse boundary conditions only depend on the large-y behaviour of the imposed
disturbance. Thus, one can require that {v̂0, ŵ0, p̂1} be periodic in ŷ when the imposed
upstream disturbance is periodic in y and similarly when the imposed disturbance is
a stationary random function of that variable. This completes the specification of the
boundary-value problem for the cross-flow in region IV which can now be solved (in
terms of ŷ) independently of the boundary-region solution because the latter enters
the former only through the transformation (3.17). The solution in region IV can
therefore be found before determining the solution in region III and the result can
then be used to obtain the appropriate outer-edge boundary conditions for the latter
region. This allows us to greatly simplify the numerical procedure described in §4. It
is worth noting here that a slightly more general form of the transformation (3.17)
can be used to accomplish a similar decoupling between the unsteady versions of the
region III and IV problems.

Equations (3.18)–(3.20) are just the two-dimensional, time-dependent Navier–Stokes
equations with x̄ playing the role of the time. They can therefore be reduced to a
single equation in the usual way by using (3.18) to introduce a stream function ψ̂0

and eliminating the pressure between (3.19) and (3.20) to obtain(
∂

∂x̄
+ ψ̂0z

∂

∂ŷ
− ψ̂0ŷ

∂

∂z

)
∇2
⊥ψ̂0 = σ∇4

⊥ψ̂0, (3.26)

where ∇2
⊥ denotes the Laplacian in the cross-flow plane. The relevant boundary-value

problem can be solved numerically by using appropriate spectral approximations in
the ŷ- and z-directions to reduce (3.26) to a coupled system of first-order ordinary-
differential equations in x̄ which can then be integrated using a standard Runge–Kutta
algorithm. However, the result of such a computation only applies when the ‘fast’
variable y is much greater than one, i.e. when the distance from the plate is large
compared to the spanwise length scale λ. But, as shown above, this is all that is
required, since the flow is given by the boundary-region solution when y is O(1).

It is easy to see that (3.26) has an exact solution of the form

ψ̂0 = ψ∞(ŷ, z)e−cσx̄ (3.27)

(where c is a positive constant) if ψ∞ satisfies ∇2
⊥ψ∞ = −cψ∞. This solution is also

a solution to the corresponding linearized problem although it may not represent a
stable solution.

4. Numerical solution to the boundary-region problem
The numerical solution to the boundary-region problem is obtained by decomposing

the dependent variables into spanwise-averaged and spanwise-varying components
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as follows:

{U,V ,W , P } = {U,V ,W , P }(x̄, y) + {Ũ, Ṽ , W̃ , P̃ }(x̄, y, z), (4.1)

where the spanwise average of {Ũ, Ṽ , W̃ , P̃ } is identically zero. Substituting (4.1) into
(3.3)–(3.6) leads to the coupled system

Ux̄ + Vy = 0, DU = R1, DW = R3, (4.2)

and

Ũx̄ + Ṽ y + W̃ z = 0, DŨ −Ux̄Ũ −UyṼ = R̃1,

DṼ − V x̄Ũ − VyṼ − P̃ y = R̃2, DW̃ −Wx̄Ũ −WyṼ − P̃ z = R̃3,

}
(4.3)

where

D ≡ σ
(
∂2

∂y2
+

∂2

∂z2

)
−U ∂

∂x̄
− V ∂

∂y
−W ∂

∂z
, (4.4)

accounts for viscous diffusion in the cross-flow plane, as well as convection by the
spanwise-averaged flow field, and the nonlinear right-hand sides are given by

{R1, R2, R3} = {R1, R2, R3}(x̄, y) + {R̃1, R̃2, R̃3}(x̄, y, z)
≡
(
Ũ
∂

∂x̄
+ Ṽ

∂

∂y
+ W̃

∂

∂z

)
{Ũ, Ṽ , W̃ }. (4.5)

The spanwise-averaged component of the normal momentum equation is not included
with (4.2) because it is not coupled to the other equations and serves only to determine
the (passive) spanwise-averaged pressure P .

It follows from (3.7), (3.22)–(3.25) and (A 1)–(A 8) that the relevant boundary
conditions are

U → F ′, V → σ∆−1
(
ηF ′ − F) , W → 0, as x̄→ 0, (4.6)

U = V = W = 0 at y = 0, U → 1, W → w̄0(x̄, y − δ̄, z) as y →∞, (4.7)

and

Ũ → −ψ0yz(0, z)
1
2
x̄ηF ′′ + x̄∆Uc(η, z), (4.8)

Ṽ → ψ0z(y, z)− ∆
[
ψ0yz(0, z)

1
4
(G+ 4η − β) + βϕyz(y, z)

]
, (4.9)

W̃ → −ψ0y(y, z) + ψ0y(0, z)(1− F ′) + ∆
[
βϕyy(y, z) +Wc(η, z)

]
, (4.10)

P̃ → σβ∆−1π0z(y, z), (4.11)

as x̄→ 0,

Ũ = Ṽ = W̃ = 0 at y = 0, (4.12)

{Ũ, Ṽ , W̃ , P̃ } → {0, ṽ0, w̃0, p̃1}(x̄, y − δ̄, z) as y →∞, (4.13)

where ∆ = (2σx̄)1/2, ϕ = ψ0 + π0, (4.8)–(4.11) are arrived at by combining (A 1)–(A 4)
and (A 5)–(A 8) to form an (additive) composite expansion (Van Dyke 1975) and
the spanwise-averaged displacement thickness δ̄ is given in terms of U by (3.9). The
higher-order terms Uc and Wc, which are given in Appendix A, had to be included in
order to start the computation successfully. The bar and tilde accents on {v0, w0, p1}
are used in (4.7) and (4.13) to denote the spanwise-mean and varying components of
the region IV cross-flow, respectively. The absence of a large-y boundary condition
for V reflects the boundary-layer nature of (4.2).

A marching procedure, based on second-order-accurate backward differences for
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the left-hand sides of (4.2) and (4.3) and a second-order predictor–corrector scheme
for the right-hand sides, was used to advance the solution in the streamwise direction.
The solution’s spanwise variation was approximated by using the truncated Fourier
series

Ũ =

+M∑
m=−M

Ũ
(m)

(x̄, y)eiγmz, (4.14)

where Ũ
(0)

(x̄, y) = 0, and similarly for the other dependent variables. The right-hand
sides of (4.2) and (4.3), which depend only on previously computed results, were then
evaluated by using fast Fourier transform methods. Aliasing errors were removed by
use of the 3

2
-rule when the FFTs were calculated. The coordinate transformation

y = s(∆2 + s2)1/2, (4.15)

was used to maintain sufficient numerical resolution in the transverse direction.
Derivatives with respect to s were approximated using second-order-accurate finite
differences, and the pressure was computed on a grid staggered in s relative to that
for the velocity components.

The resulting system of algebraic equations was solved at each streamwise station
and for both the predictor and corrector steps as follows: The nonlinear inhomoge-
neous problem for the spanwise-averaged velocity components, (4.2), (4.6) and (4.7),
was solved first by means of Newton–Raphson iteration. The results of this compu-
tation were then used on the left-hand sides of (4.3) as well as in a calculation of
the spanwise-averaged displacement thickness δ̄. The latter quantity was needed in
order to evaluate the functions {ṽ0, w̃0, p̃1} of x̄, ŷ and z (which are provided either
by a prior numerical calculation or by analytic formulae) at a given value of y as
required by the boundary conditions (4.13). The problem for the spanwise-varying
part of the flow field is then reduced to a block tri-diagonal system of linear inhomo-
geneous equations which was solved subject to (4.8)–(4.13) using a standard sparse
linear system algorithm. The difference between the predicted and corrected values
was checked at each node, and if less than a preset tolerance, the computation was
advanced to the next streamwise station.

5. Results and discussion
5.1. The high-disturbance Reynolds-number limit

The most appropriate upstream disturbances for the Klebanoff-mode experiments
would be periodic in the transverse variable y or, better, stationary random functions
of that variable (Leib et al. 1999). However, our first objective is to investigate the
limit of high-disturbance Reynolds number, which is best accomplished by comparing
the present results with the infinite-Reynolds-number results of GL. Unfortunately
they chose the imposed vorticity field to be of the form

ψ∞ = sech y sin z, (5.1)

primarily because it is one of the simplest spanwise-periodic functions exhibiting
exponential decay away from the plane of the plate. We therefore begin by considering
this type of disturbance. The resulting cross-flow streamline pattern is shown in
figure 2. It corresponds to an array of counter-rotating streamwise vortices centred at
the plate surface. Equations (5.1), (3.10) and (3.21) imply that the resulting velocity
field is exponentially small in region IV and, therefore, that the solution need not be



Effect on a laminar boundary layer of streamwise vorticity 243

4

2

0

–2

–4

y

–π –π/2 0 π/2 π

z

Figure 2. Streamline pattern in the cross-flow plane of the imposed steady upstream
disturbance field (5.1).

computed in this region, since the functions {ṽ0, w̃0, p̃1} appearing in (4.13), can simply
be set equal to zero. This is similar to the free-stream behaviour assumed in the linear
analyses of Andersson et al. (1999) and Luchini (2000). The lowest-order upstream
flow in regions I and II is the same as in GL, and it is therefore only necessary to
discuss the solution in region III.

Figure 3 shows the contours of constant streamwise velocity in the cross-flow
plane at the indicated streamwise positions for a disturbance Reynolds number r
of 500. They show that the solution initially behaves linearly, and the profiles have
the same spanwise harmonic dependence as the imposed upstream distortion. But
nonlinear effects eventually come into play, and a strong focusing occurs along the
planes of maximum boundary-layer thickness. Figure 4 is a smoke-flow visualization
photograph taken by Kendall (1985) which shows the flow in the cross-flow plane.
The camera is placed downstream of the test section, and the smoke wire is placed
at a distance above the surface of the plate corresponding to one Blasius η value.
This result suggests that nonlinear focusing occurs in the experiment as well as in the
theory.

Since the boundary-layer thickness (99% definition) of the undisturbed Blasius flow
corresponds to η ≈ 3.5, the contours in figure 3 clearly show that low-momentum
fluid is eventually ejected well into the main stream when r becomes sufficiently
large. This is due to cross-flow advection which can best be seen by looking at the
projections of the streamlines on the cross-flow plane shown in figure 5. They suggest
that well-defined shear layers will form at the surface of the plate and then roll up into
a kind of spiral as they move downstream. Figure 5 also shows a secondary vortex
system forming at the surface of the plate. When interpreting figure 5, it should be
born in mind that continuity is not satisfied in the cross-flow plane and velocity scale
can therefore not be inferred from the separation of adjacent streamlines.

Figure 6 is a three-dimensional rendering of the anticipated separation surface for
the infinite-r limit. It does not show the secondary vortex system. Notice that the
ordinate is η and not y in figures 3 and 5 so that the vertical scale is expanding
with increasing downstream distance. This localized separation could directly lead
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Figure 3. Streamwise velocity contours in the cross-flow plane for r = 500. (a) x̄ = 0.6; (b) x̄ = 2;
(c) x̄ = 4; (d) x̄ = 8. Nine contours correspond to U = 0.1, 0.2, . . ., 0.9.

Figure 4. Smoke-flow visualization of boundary layer beneath a turbulent stream
(from Kendall 1985).

to the formation of turbulent spots (but see below). The curves in figure 5 are in
qualitative agreement with the vector plots of the streamwise velocity in the cross-flow
plane shown in figure 16 of Jacobs & Durbin (2001) which suggests that nonlinear
focusing also occurs in their direct numerical simulation. Better agreement would have
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Figure 5. Streamline projections in the cross-flow plane for r = 500 and x̄ = 4.

U

Figure 6. Typical separation stream surface for infinite-r solution of GL.

been obtained if comparisons were made with the more appropriate forced solutions
considered in §5.2 below.

The wall-layer streaks beneath a turbulent boundary layer are elongated regions in
which there are strong spanwise variations in the streamwise velocity, such as those
shown in figure 3, whereas the accompanying rolls that occur in these flows may
correspond to cross-flow vortices similar to those shown in figure 5. These streaks
are probably driven by the turbulence in the main part of the boundary layer in the
same way that the Klebanoff modes are driven by the free-stream turbulence (Kline
et al. 1967). Figure 7 shows a pattern for the near-wall flow educed from a turbulent
channel-flow calculation by Stretch (1991). This should be compared with the pattern
shown in figure 6. The present analysis suggests that streaks and streamwise rolls are
different aspects of the same basic flow phenomena.

The infinite-r solution of GL develops a singularity at some streamwise location and
then becomes discontinuous downstream of that point. The present results suggest
that the singularity can be eliminated by allowing the nonlinear inviscid solution of
GL to be discontinuous across an appropriate stream surface. However, the separated
flow remains parabolic in the streamwise direction and is, in fact, a generalization
of the discontinuous slender-body-theory solution introduced by Smith (1977) and
others to describe the separated flow over cones and other slender bodies at a slight
angle of attack to the oncoming stream. The main difference is that the solution to the
present problem would involve distributed vorticity as well as vorticity concentrated
in the sheets (see figure 6).
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Figure 7. Sketch of pattern educed for turbulent channel flow (from Stretch 1991).

Smith (1977) investigated the local vortex-sheet behaviour at the separation line
and showed that two types of separation can occur, one of which exhibits a smooth
pressure gradient at the surface, and the other of which exhibits an infinite pressure
gradient there. The numerical coefficient multiplying the infinite-pressure-gradient
term in this solution can be arbitrarily specified. It is determined by extending the
analysis to include viscous effects – which are confined to boundary layers at the
surface of the body and to thin shear layers along the separated stream surfaces.

Smith (1978) showed that the separation region itself has a triple-deck structure in
the cross-flow plane and that the coefficient of the infinite-pressure-gradient term is
proportional to r−1/16 as r →∞. Needless to say, this factor will be very close to unity
unless r is extremely large, which suggests that the infinite-Reynolds-number limit will
not be very robust. However, the boundary-region equations, from which the Smith
(1977) and Smith (1978) results can be recovered, are fairly easy to solve numerically,
even at large values of r, and it is probably easier to calculate the solutions for large
but finite r to these equations than to work out the infinite-r asymptotic solution.

Before leaving this discussion of the large-r limit, it is appropriate to numerically
investigate the convergence of the infinite-r asymptotic solution to the finite-r nu-
merical result. We have not worked out the separated stream-surface solution, but
since this solution is still parabolic in the streamwise direction, it is the same as the
unseparated solution of GL in the region upstream of the separation point. However,
the convergence is very slow and becomes worse as the singularity in the solution of
GL is approached. It is therefore necessary to include a second term in the asymptotic
expansion of GL. This term is worked out in Appendix B.

Figure 8 is a comparison of the spanwise-varying component of the streamwise
velocity determined from the full boundary-region equations with the ones determined
from the one- and two-term boundary-layer solutions. The calculations are carried
out on the z = 0.91 plane where the initial singularity in the GL solution occurs and,
consequently, where the convergence is expected to be the slowest. The figure shows
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Figure 8. Comparison of the spanwise-varying component of the streamwise velocity determined
by the boundary-region and boundary-layer solutions along the z = 0.91 plane at various x̄. Solid
lines, boundary-region solution; long-dashed lines, two-term boundary-layer solution; short-dashed
lines, one-term boundary-layer solution. (a) r = 10; (b) r = 100; (c) r = 1000.

that even the two-term expansion converges very slowly when x̄ = 0.6 – indicating
that the convergence is non-uniform in x̄ as x̄ approaches the singularity.

5.2. Comparison with Klebanoff-mode experiments

As already indicated, the external flow resulting from the vorticity field (5.1) does not
produce a continuous forcing of the boundary-region solution at large streamwise
distances and is, therefore, inappropriate to the Klebanoff-mode experiments. It is
also not sufficiently complex to represent the random nature of the actual flow. These
deficiencies can be corrected by replacing (5.1) with

ψ∞ =

+N∑
m=−N

+N∑
n=−N

ψ(m,n)
∞ eiγ(mz+ny), (5.2)
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which is periodic, rather than decaying, in the transverse variable y. The true upstream
flow can be approximated by taking the Fourier coefficients to be

ψ(m,n)
∞ = (1− δm,0)(1− δ0,n) [A(k)]1/2 eiθm,n , (5.3)

where δm,n is the Kronecker delta tensor, k ≡ γ(m2 +n2)1/2, A(k) is a spectrum function
and θm,n is a uniformly distributed random angle. A similar representation was used
by Rogallo (1981) to describe an isotropic turbulence field. Here, we express the
spectrum function A(k) as

A(k) =
C

4π2

d

k dk

{
d

k dk

[
e−6.7k/r3/4

1 + b(2k)5/3

]}
, (5.4)

which is consistent with the Kolmogorov spectrum law at intermediate values of k and
agrees with the approximation used by Gulyaev et al. (1989) for isotropic turbulence
when b is set equal to 1.35/[1 + 35/(2r)3/4]. The arbitrary constant C is determined
by fixing the value of the kinetic energy

EK ≡
( γ

2π

)2
∫ 2π/γ

0

∫ 2π/γ

0

1
2
|∇⊥ψ∞|2dydz (5.5)

of the imposed cross-flow and the transverse scale factor γ is determined by requiring
that the non-dimensional characteristic length[

EK

/( γ
2π

)2
∫ 2π/γ

0

∫ 2π/γ

0

(
1
2
∇2
⊥ψ∞

)2
dydz

]1/2

, (5.6)

of that flow be equal to unity. The constants C and γ therefore depend on the
disturbance Reynolds number r but not on the random phase angles θm,n. The mode
number N was more or less arbitrarily set equal to 5.

Figure 9 shows the cross-flow streamline pattern corresponding to r = 50 (which
is appropriate to the well-documented Westin et al. 1994 experiment), EK = 1

4
and

a particular choice of θm,n. We refer to it as case A. The downstream evolution of
this disturbance is determined by numerically solving (3.26) and the analysis of §3
shows that this can be done independently of the boundary-region computation by
introducing the transformed cross-stream variable ŷ. The computation shows that
there is a gradual spreading of the initial streamlines as the flow evolves downstream.
It also shows that there is a reduction in the higher modes due to viscous dissipation
and a gradual shift of the vortex cores due to mutual induction effects.

Figure 10 is a plot of the contours of constant streamwise velocity in the cross-flow
plane at the indicated positions for case A. The figure shows that the flow becomes
highly distorted in certain very localized regions even at relatively short downstream
distances and at a relatively moderate value of the disturbance Reynolds number.
This is caused by the broad-band nature of the imposed free-stream disturbance.
However, figure 11 shows another set of contours at the same values of r and EK and
the same streamwise locations but with a different choice for the θm,n. We refer to it
as case B. This case, which is more typical than case A, does not exhibit the strong
localized distortions found in the latter, which suggests that even small changes in the
details of the upstream disturbance can strongly affect the resulting boundary-layer
flow.

We have already indicated that our ultimate objective is to explain the behaviour
of the flows with high levels of free-stream turbulence, which are, of course, unsteady
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Figure 9. Streamline pattern in the cross-flow plane of the imposed steady upstream
disturbance field (5.2) for case A.

with stochastically varying upstream boundary conditions. But, as already noted
the relevant experiments show that the boundary-layer fluctuations are of very low
frequency and it is therefore not unreasonable to expect that the temporal variations
in these experiments can be simulated by varying the phases of the upstream boundary
conditions in the present study. We show that the results are then consistent with the
experimental observations when the flow stability is discussed below.

The strong localized distortions are washed out when the flow is averaged in the
spanwise direction to obtain the streamwise velocity fluctuations given by (see (4.1))

Ũrms ≡
[
γ

2π

∫ 2π/γ

0

Ũ(x̄, y, z)2dz

]1/2

. (5.7)

The resulting flow is then much less sensitive to the details of the upstream distortion
as evidenced by figure 12 which shows the peak value of Ũrms for cases A and B.
The curves are much closer than might be expected from the large difference between
the contours shown in figures 10 and 11. These differences are reflected in the curves
showing the peak local streamwise velocity fluctuation |Ũ| near the z-planes of
maximum boundary-layer thickness. The root-mean-square (r.m.s.) and local curves
for case A are consistent with the Goldstein & Wundrow (1998) contention that the
local streamwise velocity fluctuation can become much larger than the corresponding
r.m.s. value.

The r.m.s. velocity fluctuations usually reported in the Klebanoff-mode experiments
involve some sort of averaging and might therefore bear some relation to the spanwise-
average velocity (5.7) – which could explain why a connection between the Klebanoff
modes and the infrequently occurring strong localized distortions has not, as yet, been
reported in the literature.

The decrease in wall shear resulting from the movement of low-momentum fluid
away from the wall may, ultimately, lead to distinct shear layers in the streamwise
velocity profiles. This is shown in figure 13(a) which is a plot of the streamwise velocity
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Figure 10. Streamwise velocity contours in the cross-flow plane for case A. (a) x̄ = 0.6;
(b) x̄ = 1.2; (c) x̄ = 2.4. Nine contours correspond to U = 0.1, 0.2, . . ., 0.9.

profiles near the planes of maximum inflection at x̄ = 2.4 for cases A and B. Kovasznay
et al. (1962) showed that the ‘high shear layers’ observed in their experiment led to
the formation of strong negative ‘spikes’ in the corresponding streamwise velocity
traces and ultimately to the formation of turbulent spots. Since the case A profile in
figure 13(a) closely resembles the distinct shear layers in the instantaneous velocity
profiles in figure 9 of Kovasznay et al. (1962), we expect it to breakdown in a similar
fashion. The profile for case B exhibits no such shear layer and is therefore unlikely to
be conducive to turbulent-spot formation. Unfortunately, with the exception of some
minimal results in Kendall (1998), the corresponding instantaneous velocity profiles
were not reported in most of the more recent Klebanoff-mode experiments (Roach &
Brierley 1992; Blair 1992; Westin et al. 1994) and we are therefore forced to compare
our results with the older Kovasznay et al. (1962) data.

Greenspan & Benney (1963) attributed the spike/turbulent-spot formation in the
Kovasznay et al. (1962) experiment to the growth of inviscid Rayleigh instabilities
on the extremely unstable shear layers that were observed in that investigation.
They analysed the phenomena by calculating the two-dimensional instability wave
growth on an idealized two-dimensional time-dependent base flow that resembled the
experimentally observed instantaneous profiles at certain fixed spanwise locations –
even though the actual flow was highly three-dimensional. This greatly simplified the
computations, as well as the interpretation of the phenomena, but probably made
the numerical results very inaccurate. Since our objective here is to explain and not
necessarily to accurately predict the experimental observations, we tentatively apply
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Figure 11. Streamwise velocity contours in the cross-flow plane for case B. (a) x̄ = 0.6;
(b) x̄ = 1.2; (c) x̄ = 2.4. Nine contours correspond to U = 0.1, 0.2, . . ., 0.9.
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Figure 12. Comparison of peak r.m.s. and local streamwise velocity fluctuations for cases A and B.
Case A: Ũrms (solid lines); |Ũ| along γz = −0.2 (◦). Case B: Ũrms (dashed lines); |Ũ| along γz = −1
(4).
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Figure 13. Local two-dimensional stability results at x̄ = 2.4 near planes of maximum inflection for
case A (solid lines, γz = 0) and case B (dashed lines, γz = −π/2): (a) streamwise velocity profiles;
(b) second derivatives of streamwise velocity profiles; (c) instability wave growth rates.

the locally two-dimensional approximation used by Greenspan & Benney (1963) to
the present study.

Since the wavelengths of the resulting two-dimensional instabilities are likely to be
of the order of the boundary-layer thickness, they should exhibit growth rates that
are, at least, of the order of the reciprocal boundary-layer thickness, which would be
much larger than the growth rates of the viscous Tollmien–Schlichting instabilities
that would otherwise occur. In fact, even the flattened profiles that occur upstream
of the inflectional regions are likely to be more unstable to Tollmien–Schlichting-type
instabilities than the undisturbed Blasius profile.

On the other hand, the experimental flows are highly stochastic and should therefore
exhibit upstream velocity fluctuations that occasionally become very large relative to
the mean. The effects of the higher instantaneous velocities are best accounted for in
the present analysis by increasing the kinetic energy of the imposed cross-flow while
maintaining a fixed disturbance Reynolds number. This is equivalent to increasing the
disturbance Reynolds number and appropriately rescaling the variables. But, since
this rescaling is not possible in the actual unsteady problem where the disturbance
Reynolds number would be based on the averaged characteristics of the imposed flow,
it is probably clearer to interpret the present results as an increased EK at fixed r. The
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Figure 14. Streamwise velocity contours in the cross-flow plane for case C. (a) x̄ = 0.6;
(b) x̄ = 1.2; (c) x̄ = 2.4. Nine contours correspond to U = 0.1, 0.2, . . ., 0.9.

contours of constant streamwise velocity corresponding to EK = 1 and the same r
and θm,n as used in cases A and B are shown in figures 14 and 15. We refer to them as
cases C and D, respectively. The four-fold increase in EK is equivalent to increasing
the disturbance Reynolds number to 100 – a value more appropriate to the Blair
(1992) experiment discussed below. Figure 16(a) shows the corresponding streamwise
velocity profiles near the planes of maximum inflection. Notice that the case C profile
exhibits a wake-like defect in the upper portion of the boundary layer causing it to
be even more unstable than those in figure 13(a). The wake defect may correspond
to the instantaneous ‘backward jets’ reported by Jacobs & Durbin (2001). The profile
for case D has no such wake defect but it does contain a highly inflectional region
near the wall (see figure 16b) which is not present in case C.

The case A velocity profile in figure 13(a) is inflectional, but the situation for case
B is much less obvious. The inflectional nature of the profiles can be seen more
clearly from figure 13(b), which is a plot of the corresponding second derivatives of
U with respect to y. It follows that the case B velocity profile is weakly inflectional
near the wall and is therefore expected to be only slightly unstable to the locally
two-dimensional inviscid instability waves being considered herein. When interpreting
figures 13 and 16, it should be noted that the planes of maximum inflection and
maximum boundary-layer thickness are approximately equal for cases A and C but
are quite different for cases B and D. The inviscid instability wave growth rates were
computed from the plane-wave solutions to the two-dimensional Rayleigh equation(

∂

∂t
+U

∂

∂x

)
∇2p̂− 2Uyp̂xy = 0, (5.8)
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Figure 15. Streamwise velocity contours in the cross-flow plane for case D. (a) x̄ = 0.6;
(b) x̄ = 1.2; (c) x̄ = 2.4. Nine contours correspond to U = 0.1, 0.2, . . . , 0.9.

scaled by the characteristic boundary-layer thickness (σx̄)1/2 and are plotted as
functions of the scaled Strouhal number in figure 13(c) for the case A profile shown
in figure 13(a). The relatively large value of this spatial growth rate suggests that the
instability wave will ultimately develop into a turbulent spot, which would not be the
case for the more typical case B profile. This could explain the highly intermittent
nature of the spot formation in the Klebanoff-mode type experiments since the
instantaneous velocity profiles in these experiments can be identified with the present
steady flow profiles calculated at different initial conditions.

This is consistent with the experiments of Westin et al. (1994) who report the
occasional appearance of turbulent spots at their last measuring station which, for
their 1.5% free-stream turbulence level case, corresponds to x̄ ≈ 2 and r ≈ 58 in the
present analysis.

The profiles of figure 16(a) are even more unstable than the ones shown in
figure 13(a). The corresponding spatial growth rates are shown in figure 16(c). The
instability characteristics of the outer inflectional region in case C are consistent with
the experiments carried out by Blair (1992), who imposed a weak favourable pressure
gradient on his flow in order to inhibit the growth of Tollmien–Schlichting waves.
Blair’s most important observation, from our point of view at least, is the appearance
of large single and double negative spikes in the time displays of the streamwise
velocity in the outer reaches of the boundary layer, which preceded the formation
of turbulent spots at the wall. Eventually, the spots did form, but by that time, the
outer-region spikes were very intense and well on their way to becoming turbulent.
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Figure 16. Local two-dimensional stability results at x̄ = 2.4 near planes of maximum inflection for
case C (solid lines, γz = 0.2) and case D (dashed lines, γz = π/2). (a) streamwise velocity profiles;
(b) second derivatives of streamwise velocity profiles; (c) instability wave growth rates.

Blair attributed these spikes to large-scale coherent structures in the outer reaches of
the boundary layer, whose relatively extensive pressure fields could then provoke the
incipient turbulent spots or wave packets in the easily destabilized viscous layer at
the wall. Our contention here is that these large-scale structures arise, in turn, from
the instability of the wake-like profiles just described. Outer-edge disturbances were
also reported by Kendall (1998).

Of course, these results are at best only suggestive of the actual phenomena due to
the two-dimensional nature of the approximation. The actual stability characteristics
would have to be determined by solving a generalized Rayleigh equation (see, for
example Hall & Horseman 1991; Balachandar & Malik 1995; Wundrow 1996), whose
solutions would probably exhibit somewhat different growth rates than the present
results. These solutions are also expected to exhibit spanwise-varying mode shapes
that would be maximal in the regions of greatest mean-flow distortion and nearly
vanish in the regions where the mean flow approaches its undisturbed state (Hall &
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Horseman 1991). The resulting highly concentrated disturbances could then rapidly
grow to nonlinear amplitudes and ultimately break down into turbulent spots.

The growth rates of the truly three-dimensional viscous instabilities associated
with the spanwise-flow variation (which can be thought of as generalized Tollmien–
Schlichting waves when the inflection points are close to the wall) scale with the
inverse of the spanwise length scale λ and are therefore likely to be smaller than the
Rayleigh growth rates when the disturbance Reynolds number is large. However, the
rapidly growing local instabilities could be part of a more global Tollmien–Schlichting
wave system that propagates downstream to the inflectional region of the boundary
layer from some upstream location where it is initially introduced into the boundary
layer, say, as an initially plane wave (Tani & Komoda 1962; Tani & Aihara 1969).
The local growth of this wave could still be fairly large in the inflectional region
and lead to the formation of turbulent spots even though the average growth of
the overall wave could be less than it would be in the absence of the Klebanoff
modes. This scenario, which would be most relevant to case D, is consistent with
the experimentally observed Tollmien–Schlichting wave growth which appears, on
average, to be reduced by the Klebanoff modes (Boiko et al. 1994; Kendall 1998).
However, when the inflectional region is in the outer part of the boundary layer as in
case C, a more likely scenario might be that the instability is initiated locally through
some localized receptivity mechanism as suggested by Jacobs & Durbin (2001).

These turbulent-spot-formation mechanisms could be operative in various flow
regions up to a free-stream turbulence level of about 5%. Beyond that point, it is
impossible to detect any turbulent spots in the boundary layer or, for that matter,
any other discernible features of the flow.

The instability of the advected streamwise velocity profiles may also play a role
in maintaining the turbulent motion in a fully turbulent boundary layer. A major
difference between the Klebanoff modes and the wall-layer streaks in turbulent
boundary layers is that the Klebanoff modes are forced by the imposed turbulence in
the free stream, whereas the wall-layer streaks are probably self-sustaining due to some
kind of feedback mechanism. A possible scenario is that the instability of the ejected
flow breaks down into an external turbulent flow which then drives the wall-layer
streaks in the same way that free-stream turbulence drives the Klebanoff modes.

The present work is the culmination of a decade long study of the Klebanoff-mode
phenomena by the authors and their colleagues. Many researchers have contributed
to this effort in some fashion. But worthy of acknowledgement are Professors Eli
Reshotko and Paul Durbin for their encouragement and helpful comments and
Dr James Kendall for pointing out the connection of the original GL analysis to
the Klebanoff-mode phenomena at the 1992 Transition Study Group meeting in
Reno, encouraging the authors to pursue this connection and finally supplying the
smoke-flow visualization photograph along with other useful information. It is also
appropriate to acknowledge Dr Stephen Cowley for providing a critical review of the
manuscript, pointing out some crucial references that the authors overlooked, and
most importantly for insisting that they contrast the present study with related work
that has appeared during the course of this activity and thereby significantly improve
the quality of the manuscript.

Appendix A. Upstream-matching conditions
In this appendix, the upstream-matching conditions for the boundary-region prob-

lem (3.3)–(3.6) are derived. Using (2.3)–(2.5) and (2.20)–(2.22) and putting ϕ = ψ0 +π0
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shows that matching with the linear solutions of §2 requires

U → 1, (A 1)

V → σβ∆−1 + ψ0z(y, z)− β∆ϕyz(y, z), (A 2)

W → −ψ0y(y, z) + β∆ϕyy(y, z), (A 3)

P → 1
4
σβx̄−1(2η − β) + σβ∆−1π0z(y, z), (A 4)

as x̄→ 0, with y held fixed at O(1), and (2.12)–(2.14) show that

U → F ′ − ψ0yz(0, z)
1
2
x̄ηF ′′ + x̄∆U1(η, z), (A 5)

V → σ∆−1(ηF ′ − F)− ψ0yz(0, z)
1
4
∆G+ σx̄V1(η, z), (A 6)

W → −ψ0y(0, z)F
′ + ∆W1(η, z), (A 7)

as x̄→ 0 with η = y/∆ held fixed at O(1), where the higher-order terms {U1, V1,W1},
which are derived below from the boundary-region equations themselves, have been
included because they are needed to successfully start the numerical solution discussed
in §4.

To obtain the matching condition for P as x̄→ 0 with η held fixed, it is first noted
that the upstream boundary-layer pressure fluctuations consist of two independent
components. The first results from the interaction of the imposed vorticity field with
the displaced flow above the boundary layer, and the second arises from a higher-
order correction to the Blasius flow. Crow (1966) gives an analytic expression for the
latter component, and it is easy to show from conservation of momentum that the
former component must be independent of η. Combining these results leads to

P → σ2∆−2
(
ηF ′′ + ηFF ′ − F2 + 1

2
β2
)

+ σβ∆−1π0z(0, z), (A 8)

as x̄→ 0, with η held fixed at O(1).
Equations (A 1)–(A 4) and (A 5)–(A 8) can be combined to form a composite solu-

tion to the boundary-region problem that is uniformly valid in y as x̄→ 0. However,
it is first necessary to determine the higher-order terms {U1, V1,W1}. Rewriting the
boundary-region equations (3.3)–(3.6) in terms of the independent variables x̄, η and
z, substituting (A 5)–(A 8) into the result, and equating like powers of x̄ shows that
{U1, V1,W1} are governed by

3U1 − ηU1η + V1η + 2W1z = 0, (A 9)(
3F ′ − ηF ′′)U1 − FU1η + F ′′V1 = U1ηη, (A 10)

F ′W1 − FW1η + βπ0zz(0, z) = W1ηη, (A 11)

which must be solved subject to the no-slip condition

U1 = V1 = W1 = 0 at η = 0, (A 12)

and, in order to match onto the small-y expansions of (A 1)–(A 3), the solutions must
satisfy

U1 → 0, W1 → −ψ0yy(0, z)(η − β) as η →∞. (A 13)

Equations (A 9)–(A 13) describe a linear boundary-value problem in η which must be
solved numerically in general.

A set of composite expansions that is uniformly valid in y as x̄ → 0 can now be
constructed by adding the outer solutions (A 1)–(A 4) to the inner solutions (A 5)–(A 8)
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and subtracting off the terms they have in common (Van Dyke 1975). The common
parts are determined, in the usual way, by comparing the small-y expansions of (A 1)–
(A 4) with the large-η expansions of (A 5)–(A 8). The spanwise-varying components
of the resulting composite expansions are given by (4.8)–(4.11) where

Uc ≡ U1, (A 14)

Wc ≡W1 + ψ0yy(0, z)(η − β), (A 15)

and, in arriving at (4.9), use was made of the fact that π0y(0, z) = − 3
4
ψ0y(0, z) which

follows from the definitions (2.23) and (2.24).

Appendix B. The high-disturbance Reynolds-number limit
This appendix is concerned with the high-disturbance Reynolds-number limit of

the boundary-region problem (i.e. the limit as σ → 0). In this limit, the flow in region
III develops a double-layer structure consisting of an inviscid upper layer in which y
is O(1) and a viscous lower layer in which y is O(σ1/2).

The form of the upper-layer velocity field can be deduced from the small-σ be-
haviour of (A 1)–(A 3) and is given by

{U,V ,W } = {1, v̆0, w̆0}(x̄, y, z) + σ1/2{0, v̆1, w̆1}(x̄, y, z) + · · · . (B 1)

The corresponding pressure field expands like

P = p̆0(x̄, y, z) + σ1/2p̆1(x̄, y, z) + · · · . (B 2)

Substituting (B 1) and (B 2) into the boundary-region equations (3.3)–(3.6) and equat-
ing like powers of σ shows that the upper-layer cross-flow must satisfy

v̆0y + w̆0z = 0, (B 3)

v̆0x̄ + v̆0v̆0y + w̆0v̆0z + p̆0y = 0, (B 4)

w̆0x̄ + v̆0w̆0y + w̆0w̆0z + p̆0z = 0, (B 5)

at leading order, and

v̆1y + w̆1z = 0, (B 6)

v̆1x̄ + v̆0v̆1y + w̆0v̆1z + v̆0yv̆1 + v̆0zw̆1 + p̆1y = 0, (B 7)

w̆1x̄ + v̆0w̆1y + w̆0w̆1z + w̆0yv̆1 + w̆0zw̆1 + p̆1z = 0, (B 8)

at O(σ1/2). Equations (A 2) and (A 3) imply that the solutions to these equations must
satisfy

v̆0 = ψ0z(y, z), w̆0 = −ψ0y(y, z) at x̄ = 0, (B 9)

and, putting ∆̄ = (2x̄)1/2,

v̆1 → β∆̄
−1 − β∆̄ϕyz(y, z), w̆1 → β∆̄ϕyy(y, z) as x̄→ 0, (B 10)

in order to reduce to the linear rapid-distortion solution upstream. Equations (B 3)–
(B 5) are just the two-dimensional, time-dependent Euler equations with x̄ playing the
role of the time and are equivalent to (3.6)–(3.8) of GL.

The appropriately scaled transverse variable in the lower layer is

Y ≡ y/σ1/2 = O(1), (B 11)
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which is related to the Blasius variable η by η = Y /∆̄. The small-σ behaviour of
(A 5)–(A 7) implies that the velocity field in the lower layer is of the form

{U,V ,W } = {Ŭ0, σ
1/2V̆ 0, W̆ 0}(x̄, Y , z) + σ1/2{Ŭ1, σ

1/2V̆ 1, W̆ 1}(x̄, Y , z) + · · · , (B 12)

and (B 2) implies that the corresponding pressure field should expand like

P = P̆ 0(x̄, Y , z) + σ1/2P̆ 1(x̄, Y , z) + · · · . (B 13)

Substituting (B 11)–(B 13) into the boundary-region equations and equating like pow-
ers of σ shows that

Ŭ0x̄ + V̆ 0Y + W̆ 0z = 0, (B 14)

Ŭ0Ŭ0x̄ + V̆ 0Ŭ0Y + W̆ 0Ŭ0z = Ŭ0Y Y , (B 15)

Ŭ0W̆ 0x̄ + V̆ 0W̆ 0Y + W̆ 0W̆ 0z + P̆ 0z = Ŭ0Y Y , (B 16)

at leading order, and

Ŭ1x̄ + V̆ 1Y + W̆ 1z = 0, (B 17)

Ŭ0Ŭ1x̄ + V̆ 0Ŭ1Y + W̆ 0Ŭ1z + Ŭ0x̄Ŭ1 + Ŭ0Y V̆ 1 + Ŭ0zW̆ 1 = Ŭ1Y Y , (B 18)

Ŭ0W̆ 1x̄ + V̆ 0W̆ 1Y + W̆ 0W̆ 1z + W̆ 0x̄Ŭ1 + W̆ 0Y V̆ 1 + W̆ 0zW̆ 1 = W̆ 1Y Y , (B 19)

at O(σ1/2). The first two orders of the normal-momentum equation show that P̆ 0 and
P̆ 1 must be independent of Y .

Equations (B 14)–(B 16) are just the three-dimensional, boundary-layer equations
used in GL. It is worth noting that (B 12) and (B 13) contain an O(σ1/2) correction
induced by boundary-layer displacement effects which for fixed ε can be interpreted

as O(R
−1/2
λ ). This is in contrast to two-dimensional, boundary-layer flows where the

first correction does not come in until O(R−1
λ ) and shows that the boundary-layer

approximation is less robust in three dimensions than in two.
Matching with (A 5)–(A 7) implies that

Ŭ0 → F ′ − ψ0yz(0, z)
1
2
x̄ηF ′′, (B 20)

V̆ 0 → ∆̄
−1

(ηF ′ − F)− ψ0yz(0, z)
1
4
∆̄G, (B 21)

W̆ 0 → −ψ0y(0, z)F
′, (B 22)

and

Ŭ1 → x̄∆̄U1(η, z), V̆ 1 → x̄V1(η, z), W̆ 1 → ∆̄W1(η, z), (B 23)

as x̄→ 0. The solutions to (B 14)–(B 19) must also satisfy the no-slip condition

Ŭ0 = V̆ 0 = W̆ 0 = 0, Ŭ1 = V̆ 1 = W̆ 1 = 0 at Y = 0, (B 24)

and they must match onto the small-y behaviour of (B 1) which requires that

Ŭ0 → 1, W̆ 0 → w̆0(x̄, 0, x), Ŭ1 → 0, W̆ 1 → w̆0y(x̄, 0, z)Y + w̆1(x̄, 0, z), (B 25)

as Y →∞, and since P̆ 0 and P̆ 1 are independent of Y

P̆ 0 = p̆0(x̄, 0, z), P̆ 1 = p̆1(x̄, 0, z), (B 26)

where use has been made of the fact that p̆0y(x̄, 0, z) = 0 which follows from (B 4)
and (B 27) below.

Using (B 14) and (B 25) to derive the large-Y behaviour of V̆ 0 shows that matching
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the second components of (B 1) and (B 12) requires that the upper-layer solution must
satisfy the boundary condition

v̆0 = 0, v̆1 = −
∫ ∞

0

[
Ŭ0x̄ + W̆ 0z − w̆0z(x̄, 0, z)

]
dY at y = 0, (B 27)

which implies that

v̆0, w̆0, v̆1, w̆1 → 0, as y →∞, (B 28)

for the imposed vorticity field (5.1) that is of interest here.
The upper-layer Euler problems are solved using the scheme described in GL, and

the reader is referred to that reference for the details. The corresponding boundary-
layer problems are solved using an algorithm based on the one described in §4.
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